Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Pharm Bull (Tokyo) ; 72(4): 381-384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616116

RESUMEN

Bietti's crystalline dystrophy (BCD) is an autosomal recessive chorioretinal degeneration caused by mutations in the CYP4V2 gene. It is characterized by cholesterol accumulation and crystal-like deposits in the retinas. Hydroxypropyl-ß-cyclodextrin (HP-ß-CyD) exerts therapeutic effects against BCD by reducing lysosomal dysfunction and inhibiting cytotoxicity in induced pluripotent stem cell (iPSC)-RPE cells established from patient-derived iPS cells. However, the ocular retention of HP-ß-CyD is low and needs to be improved. Therefore, this study used a viscous agent to develop a sustained-release ophthalmic formulation containing HP-ß-CyD. Our results suggest that HP-ß-CyD-containing xanthan gum has a considerably higher sustained release capacity than other viscous agents, such as methylcellulose and sodium alginate. In addition, the HP-ß-CyD-containing xanthan gum exhibited pseudoplastic behavior. It was less cytotoxic to human retinal pigment epithelial cells compared with HP-ß-CyD alone. Furthermore, the slow release of HP-ß-CyD from xanthan gum caused a sustained decrease in free intracellular cholesterol. These results suggest that xanthan gum is a useful substrate for the sustained release formulation of HP-ß-CyD, and that HP-ß-CyD-containing xanthan gum has potential as an eye drop for BCD treatment.


Asunto(s)
Colesterol , Distrofias Hereditarias de la Córnea , Polisacáridos Bacterianos , Enfermedades de la Retina , Humanos , Preparaciones de Acción Retardada/farmacología , 2-Hidroxipropil-beta-Ciclodextrina/farmacología
2.
Mater Today Bio ; 20: 100690, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37441133

RESUMEN

Various biopharmaceuticals, such as nucleic acids, proteins, and genome-editing molecules, have been developed. Generally, carriers are prepared for each biopharmaceutical to deliver it intracellularly; thus, the applications of individual carriers are limited. Moreover, the development of carriers is laborious and expensive. Therefore, in the present study, versatile and universal delivery carriers were developed for various biopharmaceuticals using aminated polyrotaxane libraries. Step-by-step and logical screening revealed that aminated polyrotaxane, including the carbamate bond between the axile molecule and endcap, is suitable as a backbone polymer. Movable and flexible properties of the amino groups modified on polyrotaxane facilitated efficient complexation with various biopharmaceuticals, such as small interfering RNA, antisense oligonucleotides, messenger RNA, ß-galactosidase, and genome-editing ribonucleoproteins. Diethylenetriamine and cystamine modifications of polyrotaxane provided endosomal-escape abilities and drug-release properties in the cytosol, allowing higher delivery efficacies than commercially available high-standard carriers without cytotoxicity. Thus, the resulting polyrotaxane might serve as a versatile and universal delivery platform for various biopharmaceuticals.

3.
Int J Pharm ; 643: 123229, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37454828

RESUMEN

In recent years, protein drug development has gained momentum, and simple and facile controlled-release systems without loss of activity are required. Herein, we developed a sustained-release system for protein drugs by exploiting the "astringency" mechanism, namely insoluble precipitate formation by interacting with tannic acid. Tannic acid formed insoluble precipitates with various protein drugs, such as nisin, insulin, lysozyme, ovalbumin, hyaluronidase, and human immunoglobulin G, through hydrophobic interactions and hydrogen bonds. The lysozyme/tannic acid complex retained in vitro lytic activity. Precipitates of the insulin/tannic acid complex prolonged hypoglycemic effects without loss of activity after subcutaneous administration. The ovalbumin/tannic acid complex enhanced anti-ovalbumin antibody production induced by ovalbumin, which may be attributed to its sustained-release profile. Accordingly, tannic acid is useful as a simple and user-friendly drug delivery system for protein drugs.


Asunto(s)
Insulinas , Muramidasa , Humanos , Preparaciones de Acción Retardada , Taninos/química , Ovalbúmina
4.
Carbohydr Polym ; 305: 120551, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36737200

RESUMEN

Methylated ß-cyclodextrin (MßCD) can extract cholesterol from lipid rafts and induce apoptosis in cancer cells by inhibiting activation of the PI3K-Akt-Bad pathway. In this study, we modified MßCD with mannose (Man-MßCD) and assessed its in vitro and in vivo potential for targeting colon cancer cells expressing the mannose receptor (MR) and tumor-associated macrophages (TAM). Man-MßCD showed a significantly greater level of cellular association with colon-26 cells and M2 macrophages, and much more prominent anticancer activity than that of MßCD against MR-positive colon-26 cells. These results revealed that autophagy was the main mechanism of cell death associated with Man-MßCD. Furthermore, compared with MßCD, Man-MßCD significantly reduced tumor development following intravenous delivery to tumor-bearing mice, with no apparent side effects. Thus, Man-MßCD has the potential to be a novel anticancer drug.


Asunto(s)
Neoplasias del Colon , beta-Ciclodextrinas , Ratones , Animales , Manosa , Macrófagos Asociados a Tumores , Fosfatidilinositol 3-Quinasas/metabolismo , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico
5.
FEBS Open Bio ; 13(2): 233-245, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36537756

RESUMEN

Supramolecular drug carriers are a promising approach for delivering anticancer drugs with high blood retention after administration. We previously synthesized folic acid-modified methyl-ß-cyclodextrin (FA-MßCD) as an anticancer drug. FA-MßCD has a selective autophagy-mediated antitumor effect on folic acid receptor (FR)-expressing cancer cells. Here, we enhanced the antitumor effect and safety of FA-MßCD by preparing a supramolecular nanoparticle formulation of FA-MßCD via host-guest interactions using an adamantane conjugate with human serum albumin (Ad-HSA). The Ad-HSA/FA-MßCD supramolecular complex prolonged the blood retention of FA-MßCD and improved its antitumor effect and safety after intravenous administration in tumor-bearing mice xenografted with FR-expressing cancer cells. These results suggest that the supramolecular technique using Ad-HSA is a promising approach for the delivery of CD-based anticancer drugs.


Asunto(s)
Adamantano , Antineoplásicos , Nanopartículas , Humanos , Animales , Ratones , Ácido Fólico/farmacología , Adamantano/farmacología , Albúminas
6.
Biol Pharm Bull ; 45(11): 1660-1668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36328502

RESUMEN

Hereditary amyloidgenic transthyretin (ATTR) amyloidosis is caused by a genetic point-mutated transthyretin such as TTR Val30Met (TTR V30M), since it forms protein aggregates called amyloid resulting in the tissue accumulation and functional disorders. In particular, ATTR produced by retinal pigment epithelial cells often causes ATTR ocular amyloidosis, which elicits deterioration of ocular function and ultimately blindness. Therefore, development of novel therapeutic agents is urgently needed. Genome-editing technology using Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated proteins (CRISPR-Cas9) system is expected to be a therapeutic approach to treat genetic diseases, such as ATTR amyloidosis caused by a point mutation in TTR gene. Previously, we reported that glucuronylglucosyl-ß-cyclodextrin conjugated with a polyamidoamine dendrimer (CDE) had excellent gene transfer ability and that underlying dendrimer inhibited TTR aggregation. Conversely, folate receptors are known to be highly expressed in retina; thus, folate has potential as a retinal target ligand. In this study, we prepared a novel folate-modified CDE (FP-CDE) and investigated its potential as a carrier for the retinal delivery of TTR-CRISPR plasmid DNA (pDNA). The results suggested that FP-CDE/TTR-CRISPR pDNA could be taken up by retinal pigment epithelial cells via folate receptors, exhibited TTR V30M amyloid inhibitory effect, and suppressed TTR production via the genome editing effect (knockout of TTR gene). Thus, FP-CDE may be useful as a novel therapeutic TTR-CRISPR pDNA carrier in the treatment of ATTR ocular amyloidosis.


Asunto(s)
Neuropatías Amiloides Familiares , Dendrímeros , Humanos , Prealbúmina/genética , Prealbúmina/metabolismo , Estudios de Factibilidad , Neuropatías Amiloides Familiares/tratamiento farmacológico , Amiloide , Plásmidos/genética , Ácido Fólico , Pigmentos Retinianos/uso terapéutico
7.
Eur J Pharm Biopharm ; 181: 113-121, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36372270

RESUMEN

Recent viral pandemics have increased global demand for vaccines. However, the supply of effective and safe vaccine not only to developed countries but also developing countries with inadequate storage equipment is still challenging due to the lack of robust systems which improve the efficacy and the stability of vaccines with few side effects. In our previous study, polypseudorotaxane (PPRX) hydrogels based on cyclodextrin (CyD) and polyethylene glycol (PEG) significantly improved the stability of antibody preparations and showed no serious adverse effects after subcutaneous injection, suggesting the possibility as safe vaccine formulations to stabilize an antigen protein. Moreover, recent studies have reported that one of the CyD derivatives, hydroxypropyl-ß-CyD (HP-ß-CyD), acts as an adjuvant to enhance protective type-2 immune responses. However, it is still unknown that CyD PPRX hydrogels enhance not only the stability of an antigen protein but also its immunogenicity with tolerable side effects. Here, we demonstrate that α- and γ-CyD PPRX hydrogels containing an antigen protein significantly induce antigen-specific type-2 immune responses. Moreover, α- and γ-CyD PPRX hydrogels showed negligible local irritation at the injection site, although subcutaneous injection of α-CyD alone induced skin lesion. Finally, shaking stability of the antigen protein at room temperature was significantly improved by being included in α- and γ-CyD PPRX hydrogels. These results propose the possibility of α- and γ-CyD PPRX hydrogels as novel vaccine formulations which improve both the immunogenicity and stability of an antigen protein with suppressed local irritation.


Asunto(s)
Ciclodextrinas , Vacunas , Hidrogeles , Polietilenglicoles
8.
ACS Macro Lett ; 11(11): 1225-1229, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215131

RESUMEN

To achieve a systemic targeted delivery of siRNA using polymeric carriers, there is a dilemma between ligand modification and stabilization of the polyplex. Namely, ligand modification often leads to destabilization of the polyplex in the blood circulation. In fact, we previously developed cyclodextrin (CD)/polyamidoamine dendrimer conjugates (CDE) as siRNA carriers, and the interaction of CDE/siRNA was decreased by the conjugation with folate-polyethylene glycol, leading to the destabilization. To overcome this dilemma, in this study, folate-appended polyrotaxanes (Fol-PRX) were developed. Fol-PRX stabilized CDE/siRNA polyplex by intermolecularly connecting CDE molecules through a host-guest interaction between adamantane at the terminals of Fol-PRX and ß-CD in the polyplex. Moreover, the intermolecular connection of the polyplex with Fol-PRX provided movable folate moieties on the surface. As a result, Fol-PRXs enhanced the in vivo antitumor activity of the polyplex after intravenous administration, suggesting their utility as the dual-functional materials for systemic delivery of siRNA polyplexes.


Asunto(s)
Rotaxanos , ARN Interferente Pequeño , Ácido Fólico , Ligandos , Polietilenglicoles
9.
ACS Appl Mater Interfaces ; 14(36): 40599-40611, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36052562

RESUMEN

Amyloidosis pathologically proceeds via production of amyloidogenic proteins by organs, formation of protein aggregates through structural changes, and their deposition on tissues. A growing body of evidence demonstrates that amyloidosis generally develops through three critical pathological steps: (1) production of amyloid precursor proteins, (2) amyloid formation, and (3) amyloid deposition. However, no clinically effective therapy that is capable of targeting each pathological step of amyloidosis independently is currently available. Here, we combined therapeutic effects and developed a short hairpin RNA expression vector (shRNA) complex with a cyclodextrin-appended cationic dendrimer (CDE) as a novel multitarget therapeutic drug that is capable of simultaneously suppressing these three steps. We evaluated its therapeutic effects on systemic transthyretin (ATTR) amyloidosis and Alzheimer's disease (AD) as localized amyloidosis, by targeting TTR and amyloid ß, respectively. CDE/shRNA exhibited RNAi effects to suppress amyloid protein production and also achieved both inhibition of amyloid formation and disruption of existing amyloid fibrils. The multitarget therapeutic effects of CDE/shRNA were confirmed by evaluating TTR deposition reduction in early- and late-onset human ATTR amyloidosis model rats and amyloid ß deposition reduction in AppNL-G-F/NL-G-F AD model mice. Thus, the CDE/shRNA complex exhibits multifunctional therapeutic efficacy and may reveal novel strategies for establishing curative treatments for both systemic and localized amyloidosis.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ciclodextrinas , Dendrímeros , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide , Péptidos beta-Amiloides , Proteínas Amiloidogénicas , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Animales , Ciclodextrinas/farmacología , Dendrímeros/farmacología , Humanos , Ratones , ARN Interferente Pequeño , Ratas
10.
Chem Res Toxicol ; 35(9): 1598-1603, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36027604

RESUMEN

Mutant p53 not only loses its original tumor suppressor function but also acquires new abilities regarding oncogenic progression. Therefore, the strategy of targeting mutant p53 has attracted attention for cancer therapy. We isolated colletofragarone A2 (CF) from the fungus Colletotrichum sp. (13S020), which decreases mutant p53 levels in cells, and herein examine its effect on mutant p53. CF showed more potent cytotoxic activities on cells with p53R175H structural mutants than those with different p53 statuses such as a DNA-contact mutant, wild-type, and null cells. CF markedly decreased tumor cell growth in vivo using a mouse xenograft model with HuCCT1 (p53R175H) cells. Cotreatment of SK-BR-3 (p53R175H) cells with CF and cycloheximide decreased mutant p53 levels by promoting p53 degradation. In the presence of MG-132, CF induced the accumulation of the aggregated mutant p53. These results suggest that CF inhibits the function of molecular chaperones such as HSP90.


Asunto(s)
Transformación Celular Neoplásica , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Colletotrichum , Cicloheximida , ADN , Chaperonas Moleculares , Mutación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
ACS Appl Bio Mater ; 5(5): 2377-2388, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35506864

RESUMEN

Niemann-Pick disease type C (NPC) is characterized by the accumulation of glycolipids such as free cholesterol, sphingomyelin, and gangliosides in late endosomes/lysosomes (endolysosomes) due to abnormalities in the membrane proteins NPC1 or NPC2. The main symptoms of NPC caused by free cholesterol accumulation in various tissues vary depending on the time of onset, but hepatosplenomegaly and neurological symptoms accompanied by decreased motor, cognitive, and mental functions are observed in all age groups. However, the efficacy of NPC treatment remains limited. Herein, we have fabricated lactose-appended hydroxypropyl-ß-cyclodextrin (Lac-HPßCD) and evaluated its lowering effects on cholesterol accumulation in NPC model mice. We reveal that Lac-HPßCD lowers cholesterol accumulation in the liver and spleen by reducing the amount of free cholesterol. Moreover, Lac-HPßCD reduces the amount of free cholesterol in the cerebrum and slightly alleviates motor dysfunction. These results suggest that Lac-HPßCD has potential for the treatment of NPC.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Animales , Colesterol/metabolismo , Endosomas/metabolismo , Lactosa/metabolismo , Ratones , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico
12.
Pharmaceutics ; 14(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214124

RESUMEN

The oral bioavailability of drugs is limited by factors such as poor membrane permeability, low solubility, and low dissolution rate. Silymarin (SLM) is a health-food active ingredient that is good for immunosuppression and tumor suppression. However, obtaining a good oral bioavailability is difficult owing to its poor solubility and low dissolution ability. To overcome these concerns, we previously prepared SLM nanoparticles (NPs) using the high-pressure crystallization method (PureNanoTM) and freeze-dried them with erythritol (Ery) or hydroxypropyl-ß-CyD (HP-ß-CyD) as a water-soluble dispersion stabilizer. In the present study, we investigated the mechanism underlying the improved absorption of SLM/hypromellose (HPMC)/HP-ß-CyD NPs after oral administration. The SLM/HPMC nano-suspension prepared using PureNanoTM exhibited a narrow size distribution. The size of the SLM/HPMC/HP-ß-CyD NPs was approximately 250 nm after hydration. The SLM/HPMC/HP-ß-CyD NPs were rapidly dissolved, and demonstrated a high solubility under supersaturated conditions. Additionally, they exhibited good wettability and their membrane permeability was improved compared with that of SLM original powder. These results suggest that the formulation of SLM NPs using PureNanoTM and freeze-drying with HP-ß-CyD improves the absorption of SLM after oral administration by enhancing solubility, wettability, and membrane permeability.

13.
J Pharm Sci ; 111(7): 2116-2120, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35093335

RESUMEN

Pharmaceutical excipients, such as surfactants, amino acids, and polymers, have often been used to improve the physicochemical properties of protein drugs. However, the effects of these additives are limited because of factors such as their weak interactions with protein drugs. In the present study, we evaluated the application of a supramolecular polymer, aminated polyrotaxane (NH2-PRX), which can strongly interact with protein drugs via its dynamic and transformable properties, as a new pharmaceutical excipient for these agents. As a conventional control polymer with low mobility and average complexation ability, aminated dextran (NH2-DEX) was also prepared. NH2-PRX significantly reduced the aggregation of antibodies induced by shaking, compared with NH2-DEX. The adsorption of insulin onto glass and polypropylene containers was also reduced by the addition of NH2-PRX. In addition, the in vivo bioactivity of insulin was completely retained in the presence of NH2-PRX. Moreover, severe adverse effects were not observed following the administration of NH2-PRX. These findings indicate the potential use of NH2-PRX as a transformable pharmaceutical excipient for protein drugs.


Asunto(s)
Ciclodextrinas , Insulinas , Rotaxanos , Ciclodextrinas/química , Excipientes , Preparaciones Farmacéuticas , Polímeros/química , Proteínas , Rotaxanos/química
14.
Eur J Pharm Sci ; 168: 106081, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34818571

RESUMEN

Pulmonary drug administration for the treatment of lung cancer is useful because the drug is directly delivered to the lung tissues with minimal invasiveness and higher efficiency compared to other conventional methods. However, it is critical to enhance drug accumulation in the lung cancer tissues to achieve sufficient therapeutic efficacy. The submicron-sized liposome (ssLip) preparation is one of the most promising approaches to enhance drug accumulation in the lungs; however, ssLips prepared for conventional inhalation do not have tumour selectivity. Therefore, in this study, we prepared folate (FA)-modified ssLip (FA-ssLip) to enhance drug accumulation in folate receptor (FR)-expressing lung cancer cells, and evaluated its physicochemical properties and potential as a drug carrier in pulmonary administration. In addition, we prepared rapamycin (RM-an autophagy-inducing anticancer drug)-loaded FA-ssLip (RM/FA-ssLip) and investigated its anti-tumour effect. FA-ssLip showed excellent nanoparticle properties with submicron size (approximately 120 nm) and high lung accumulation in lung cancer mouse model-bearing LL2 cells-a mouse Lewis lung carcinoma cell line. RM/FA-ssLip showed significant cytotoxic activity in FR-expressing cancer cells. In addition, pulmonary administration of RM/FA-ssLip extended the survival of LL2 cell tumour-bearing mice. Taken together, our results suggest the potential of FA-ssLip as a pulmonary drug carrier for the efficient treatment of lung cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Animales , Ácido Fólico , Liposomas , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Ratones
15.
Mater Today Bio ; 12: 100160, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34841242

RESUMEN

We herein developed a transformable mixing-type material for reversible PEGylation of protein drugs using a supramolecular backbone polymer, that is, polyrotaxane possessing both amino groups and PEG chains (PEG-NH2-PRX). We expected that PEG-NH2-PRX provides amino groups to interact with protein drugs on demand because the mobility of amino groups in PEG-NH2-PRX was high. In fact, PEG-NH2-PRX formed complexes with protein drugs efficiently compared to PEGylated amino-dextran (PEG-NH2-DEX), a control material fabricated with a macromolecular backbone polymer. Moreover, PEG-NH2-PRX markedly improved the stability of antibodies and prolonged the hypoglycemic effects of insulin without loss of bioactivity, compared to PEG-NH2-DEX. These findings suggest that the supramolecular material, PEG-NH2-PRX, is a promising reversible PEGylation material for protein drugs compared to macromolecular materials.

16.
Cancers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771576

RESUMEN

2-Hydroxypropyl-ß-cyclodextrin (HP-ß-CyD) is widely used as an enabling excipient in pharmaceutical formulations. We previously demonstrated that HP-ß-CyD disrupted cholesterol homeostasis, and inhibited the proliferation of leukemia cells by inducing apoptosis and cell-cycle arrest. Recently developed drug delivery systems using folic acid (FA) and folic acid receptors (FR) are currently being used in cancer treatment. To confer tumor cell-selectivity to HP-ß-CyD, we synthesized folate-appended HP-ß-CyD (FA-HP-ß-CyD) and evaluated the potential of FA-HP-ß-CyD as an anticancer agent using chronic myeloid leukemia (CML) cells in vitro and in vivo. FA-HP-ß-CyD inhibited the growth of FR-expressing cells but not that of FR-negative cells. FA-HP-ß-CyD had stronger anti-leukemia and cell-binding activities than HP-ß-CyD in CML cells. Unlike HP-ß-CyD, FA-HP-ß-CyD entered CML cells through endocytosis and induced both apoptosis and autophagy via mitophagy. FA-HP-ß-CyD increased the inhibitory effects of the ABL tyrosine kinase inhibitors imatinib mesylate and ponatinib, which are commonly used in CML. In vivo experiments in a BCR-ABL leukemia mouse model showed that FA-HP-ß-CyD was more effective than HP-ß-CyD at a ten-fold lower dose. These results indicate that FA-HP-ß-CyD may be a novel tumor-targeting agent for the treatment of leukemia.

17.
FEBS Open Bio ; 11(9): 2619-2630, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363652

RESUMEN

Eosinophilic asthma is a form of bronchial asthma that is caused by the pulmonary infiltration of eosinophils and accounts for approximately half of the patients with severe asthma. Several cell types of the immune system in synergy with the epithelial cells of the lung provoke an inflammatory response in patients with asthma. Recently, the effect of fasting on immune cells and inflammation has attracted considerable attention. Therefore, we examined whether fasting may serve as novel preventive strategy in patients with asthma. In our study, we employed a previously established mouse model of eosinophilic asthma. C57BL/6 mice were inoculated intranasally with interleukin-33 and ovalbumin (OVA) in order to induce eosinophil infiltration in the lung and subjected to a 48-h long fasting period directly after or 7 days postinoculation. We used flow cytometry to characterise infiltrated immune cells in the lung and measured the quantity of inflammatory cytokines as well as antigen-specific immunoglobins (Ig) by ELISA. Our results indicated that fasting lowered the number of eosinophilic pulmonary infiltrates in the eosinophilic asthma model mice. Furthermore, fasting suppressed anti-OVA IgG1 production. Fasting suppressed Th2 cytokine production by impairing Th2 accumulation in the lung. The findings suggest that fasting may be a novel preventive strategy for eosinophilic asthma.


Asunto(s)
Asma/etiología , Asma/metabolismo , Eosinófilos/patología , Ayuno , Pulmón/inmunología , Pulmón/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Alérgenos/inmunología , Animales , Asma/patología , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Inmunomodulación , Pulmón/patología , Ratones , Ovalbúmina/inmunología
18.
Carbohydr Polym ; 256: 117419, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33483011

RESUMEN

Recently, antibody drugs have been used worldwide, and based on worldwide sales, 7 of the top 10 pharmaceutical products in 2019 were antibody-based drugs. However, antibody drugs often form aggregates upon thermal and shaking stresses with few efficient stabilizing agents against both stresses. Herein, we developed polypseudorotaxane (PpRX) hydrogels consisting of cyclodextrins (CyDs) and polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG block copolymers (Pluronics F108, F87, F68, and L44), and evaluated their utility as antibody stabilizing agents. α- and γ-CyDs formed PpRX hydrogels with Pluronics, where CyD/F108 gels showed remarkable stabilizing effects for human immunoglobulin G (IgG) against both thermal and shaking stresses beyond CyD/PEG gels or generic gels. The effects were probably due to the interaction between IgG and the free PPG block of Pluronic F108, resulting in the strong IgG retention in the gels. These findings suggest the great potential of CyD/Pluronic gels as pharmaceutical materials for antibody formulations.


Asunto(s)
Anticuerpos/química , Materiales Biocompatibles/química , Ciclodextrinas/química , Composición de Medicamentos , Excipientes/química , Hidrogeles/química , Poloxámero/química , Química Farmacéutica/instrumentación , Preparaciones de Acción Retardada , Portadores de Fármacos , Humanos , Inmunoglobulina G/química , Luz , Oligosacáridos/química , Tamaño de la Partícula , Polímeros/química , Rotaxanos/química , Dispersión de Radiación , Espectrometría Raman , Viscosidad , Difracción de Rayos X
19.
J Control Release ; 328: 722-735, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33002523

RESUMEN

The blood-brain barrier (BBB) prevents the permeability of drugs into the brain, and as such limits the management of various brain diseases. To overcome this barrier, drug-encapsulating nanoparticles or vesicles, drug conjugates, and other types of drug delivery systems (DDSs) have been developed. However, the brain-targeting ability of nanoparticles or vesicles is still insufficient. Recently, among the various brain-targeting ligands previously studied for facilitating transcellular BBB transport, several sugar-appended nanocarriers for brain delivery were identified. Meanwhile, cyclodextrins (CyDs) have been used as nanocarriers for drug delivery since they can encapsulate hydrophobic compounds with high biocompatibility. Therefore, in this study, we created various sugar-appended ß-cyclodextrins (ß-CyDs) to discover novel brain-targeting ligands. As a result, of the six sugar-appended CyDs, lactose-appended ß-CyD (Lac-ß-CyD) showed greater cellular uptake in hCMEC/D3 cells, human brain microvascular endothelial cells, than other sugar-appended ß-CyDs did. In addition, the permeability of Lac-ß-CyD within the in vitro human BBB model was greater than that of other sugar-appended ß-CyDs. Moreover, Lac-ß-CyD significantly accumulated in the mouse brain after intravenous administration. Thus, Lac-ß-CyD efficiently facilitated the accumulation of the model drug into the mouse brain. These findings suggest that Lac-ß-CyD has the potential to be a novel carrier for drugs across the BBB.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , Encéfalo , Células Endoteliales , Lactosa
20.
ACS Appl Mater Interfaces ; 12(19): 21386-21397, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32315156

RESUMEN

A preassembled Cas9/single-guide RNA complex (Cas9 ribonucleoprotein; Cas9 RNP) induces genome editing efficiently, with small off-target effects compared with the conventional techniques, such as plasmid DNA and mRNA systems. However, penetration of Cas9 RNP through the cell membrane is low. In particular, the incorporation of Cas9 RNP into neurons and the brain is challenging. In the present study, we have reported the use of a dendrimer (generation 3; G3)/glucuronylglucosyl-ß-cyclodextrin conjugate (GUG-ß-CDE (G3)) as a carrier of Cas9 RNP and evaluated genome editing activity in the neuron and the brain. A Cas9 RNP ternary complex with GUG-ß-CDE (G3) was prepared by only mixing the components. The resulting complex exhibited higher genome editing activity than the complex with the dendrimer (G3), Lipofectamine 3000 or Lipofectamine CRISPRMAX in SH-SY5Y cells, a human neuroblastoma cell line. In addition, GUG-ß-CDE (G3) enhanced the genome editing activity of Cas9 RNP in the whole mouse brain after a single intraventricular administration. Thus, GUG-ß-CDE (G3) is a useful Cas9 RNP carrier that can induce genome editing in the neuron and brain.


Asunto(s)
Encéfalo/metabolismo , Proteína 9 Asociada a CRISPR/farmacología , Dendrímeros/química , Portadores de Fármacos/química , Edición Génica/métodos , Ribonucleoproteínas/farmacología , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Técnicas de Transferencia de Gen , Humanos , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...